
 S O L I D I T Y F I N A N C E

Collar Quest Auction &
ICO

Smart Contract Audit Report

A U D I T S U M M A R Y

Collar Quest is releasing an auction platform and ICO contract for NFTs.

For this audit, we reviewed Collar Quest's SPARCEClockAuction contract

at 0xe499cee42868a0b4f8ac2152a77b012530b361e4 and

InitialCoinO!ering contract at

0xf02c7673735f7c5921b4530ece6790b2449d6cba on the Ethereum

Mainnet.

We previously reviewed the project team's SPARCE contract here and

Battle and Breeding contracts here.

https://solidity.finance/
https://www.collarswap.io/
https://etherscan.io/address/0xe499cee42868a0b4f8ac2152a77b012530b361e4#code
https://etherscan.io/address/0xf02c7673735f7c5921b4530ece6790b2449d6cba#code
https://solidity.finance/audits/CollarQuestSPARCE/
https://solidity.finance/audits/CollarQuestBattleAndBreeding/

A U D I T F I N D I N G S

High findings were identified and the team must resolve these

issues. In addition, centralized aspects are present.

Date: September 29th, 2022.

Finding #1 - SPARCEClockAuction - High

Description: The createAuction() function relies on the

SPARCECore NFT contract's getSparce() function for NFT data.

Risk/Impact: The getSparce() function will revert if an NFT ID is

provided that does not exist in the SPARCECore NFT contract. As a

result, NFTs from other NFT collections will be rejected if their ID

does not also exist in the SPARCECore NFT contract.

Recommendation: The team should restructure the call to the

getSparce() function as follows:

Resolution: The team has not yet addressed this issue.

Finding #2 - SPARCEClockAuction - High

addressaddress _operator _operator;;
boolbool _newlyBorn _newlyBorn;;
ifif((_nftAddress _nftAddress ==== addressaddress((collarQuestcollarQuest)) {{

((,, ,, _operator _operator,, _newlyBorn _newlyBorn)) == collarQuest collarQuest..getSparcegetSparce((
}}

Description: The calculateSaleRoyalty() function will return the

default variable values if the NFT is not a SPARC-E NFT.

Risk/Impact: Any non-SPARC-E NFT will have a price of 0

regardless of the price set by the user.

Recommendation: The team should set the _price value before

returning:

ifif((_nftAddress _nftAddress !=!= addressaddress((collarQuestcollarQuest)))) {{
_price _price == price price;;
returnreturn ((_royalityFee_royalityFee,,_daoFee_daoFee,,_price_price));;

}}

Resolution: The team has not yet addressed this issue.

Finding #3 - SPARCEClockAuction - High

Description: The contract contains no external functions to toggle

the paused and unpaused state.

Risk/Impact: The whenPaused() modifier will have no e!ect.

Recommendation: The team should add external owner

restricted pause() and unpause() functions.

Resolution: The team has not yet addressed this issue.

Finding #4 - InitialCoinOffering - Medium

Description: The contract relies on the code.length value to

determine if an address is a contract in the _isContract() modifier:

Risk/Impact: A contract could call these functions in its

constructor to bypass this restriction.

Recommendation: The team should rather enforce that the

msg.sender is the same as the tx.origin in the _isContract()

modifier:

Resolution: The team has not yet addressed this issue.

Finding #5 - InitialCoinOffering - Low

Description: The currentSaleId value is incremented a"er the

public sale start and end times are set.

Risk/Impact: Whitelisted users could reach the max buy value

twice if the presale is open before the public sale start and end

times are set.

Recommendation: The team should should consider using a

functionfunction _isContract_isContract((addressaddress account account)) privateprivate viewview returnsreturns
returnreturn account account..codecode..length length >> 00;;

}}

functionfunction _isContract_isContract((addressaddress account account)) privateprivate viewview returnsreturns
returnreturn msg msg..sender sender ==== tx tx..originorigin;;

}}

single integer buy count rather than a mapping.

Resolution: The team has not yet addressed this issue.

Finding #6 - SPARCEClockAuction - Low

Description: The contract uses the native .transfer() function to

send ETH.

Risk/Impact: Contracts that are the recipient of ETH transfers

using the .transfer() function will be unable to perform any non-

trivial functionality in their receive() or fallback() functions.

Recommendation: The team should use the .call() function

instead of the .transfer() function.

Resolution: The team has not yet addressed this issue.

Finding #7 - InitialCoinOffering - Informational

Description: The public sale start time can be set to a timestamp

in the past.

Recommendation: The team should enforce that the public start

time is greater than the block.timestamp.

Resolution: The team has not yet addressed this issue.

Finding #8 - SPARCEClockAuction - Informational

Description: The royalty and DAO fee setters only check the

individual tax amounts are less than the DIVISOR value.

Recommendation: The team should should consider enforcing

that the sum of the royalty and DAO fees are less than the DIVISOR.

Resolution: The team has not yet addressed this issue.

C O N T R A C T S O V E R V I E W

As the contracts are implemented with Solidity v0.8.4, they are

safe from any possible overflows/underflows.

InitialCoinO!ering Contract:

This contract allows the owner to list SPARC-E NFTs for sale in

various initial o!ering stages.

The sale is split into presale, public sale, and crowd sale and

will occur in that order chronologically.

The owner may list any number of NFTs for sale at any price at

any time.

The owner may remove any NFT from sale at any time.

The owner may update the price of any NFT for sale at any

time.

Whitelisted EOAs may purchase may purchase NFTs during the

presale period.

NFTs purchased in this period will receive the presale level of

discount.

Users may only buy up to the "max buy" amount of NFTs in this

period.

Any EOA may purchase any number of NFTs during the public

sale period.

NFTs purchased in this period will receive the public sale level

of discount.

Any EOA may purchase any number of NFTs during the crowd

sale period a"er the public sale has ended.

NFTs purchased in this period will receive the crowd sale level

of discount.

The owner may set the presale start and end time to any values

in the future given that the public sale times have not been set.

The owner may set the public sale start and end time to any

values a"er the presale end time once the presale times have

been set.

The owner may reset the presale and public sale timestamps if

the public sale end time has not passed.

The owner may update the discount for each stage at any time.

The owner may update the max buy amount to any value at

any time.

The owner may update the SPARC-E NFT address at any time.

The owner may add and remove any address from the whitelist

at any time.

The owner may withdraw any excess ETH in the contract at any

time.

The owner may pause the contract, preventing the purchase of

NFTs, at any time.

The contract utilizes ReentrancyGuard to protect against

reentrancy attacks in applicable functions.

SPARCEClockAuction Contract:

This contract allows users to list NFTs for sale.

Any user may list an NFT for sale.

The contract is intended to allow NFTs from any NFT collection

to be listed for sale, however, due to logical issues only NFT IDs

that exist in the SPARCECore contract can be listed.

Users must specify a starting price, ending price, and auction

duration.

An NFT's price will change over the sale duration increasing or

decreasing until it reaches the end price.

The auction duration must be at least 1 minute long.

Users may bid on a listed NFT by providing a message signed

by the Signer address.

If the bid amount is at least the NFT's current price, the user will

successfully buy the token.

Due to logical issues the price for non-SPARC-E NFTs will be

zero.

An additional royalty and DAO fee may be taken if the contract

is a SPARC-E NFT.

The fees are dependent upon whether the SPARC-E NFT is

"newly born" and if the Operator associated with the NFT is the

Breeding contract.

The Treasury address will be sent the DAO fee, the Royalty

address will be sent the royalty fee, if applicable, and the

remaining ETH sent to the NFT seller.

Any excess ETH will be returned to the buyer.

If a SPARC-E NFT was newly born when purchased, it will no

longer be newly born.

The owner of a listing may cancel the listing at any time.

The owner may cancel any listing when the contract is paused.

The owner may update the Breeding contract address, Signer

address, Treasury address, and SPARCECore NFT address at

any time.

The owner may update the fees for Breeder and non-Breeder

sales and newly born and not newly born sales to any value up

to 100% at any time.

A U D I T R E S U LT S

Vulnerability

Category

Notes Result

Arbitrary

Jump/Storage

Write

N/A PASS

Centralization of

Control

The SPARCEClockAuction

owner may cancel all listings if

the contract is paused.

The SPARCEClockAuction

owner may set auction fees

up to 100%.

The InitialCoinO!ering owner

may reset the presale and

public sale start and end

times.

WARNING

Compiler Issues N/A PASS

Delegate Call to

Untrusted

Contract

N/A PASS

Dependence on

Predictable

Variables

N/A PASS

Ether/Token

The"

N/A PASS

Flash Loans N/A PASS

Front Running N/A PASS

Improper Events N/A PASS

Improper

Authorization

Scheme

N/A PASS

Integer

Over/Underflow

N/A PASS

Logical Issues Only NFT IDs that exist in the

SPARCECore contract may be

listed.

Non-SPARC-E NFTs will always

have a price of 0.

The contract contains no

external functions to toggle

the paused state.

The InitialCoinO!ering

FAIL

contract relies on code.length

which can be bypassed in a

constructor.

Oracle Issues N/A PASS

Outdated

Compiler Version

N/A PASS

Race Conditions N/A PASS

Reentrancy N/A PASS

Signature Issues N/A PASS

Unbounded

Loops

N/A PASS

Unused Code N/A PASS

Overall Contract

Safety

 FAIL

InitialCoinOffering Contract

+

I N H E R I T A N C E C H A R T

+

F U N C T I O N G R A P H

+

F U N C T I O N S O V E R V I E W

SPARCEClockAuction Contract

+

I N H E R I T A N C E C H A R T

+

F U N C T I O N G R A P H

+

F U N C T I O N S O V E R V I E W

ABOUT SOLIDITY FINANCE
Solidity Finance was founded in 2020 and quickly grew to have one of the most

experienced and well-equipped smart contract auditing teams in the industry. Our team

has conducted 1300+ solidity smart contract audits covering all major project types and

protocols, securing a total of over $10 billion U.S. dollars in on-chain value.

Our firm is well-reputed in the community and is trusted as a top smart contract auditing

company for the review of solidity code, no matter how complex. Our team of experienced

solidity smart contract auditors performs audits for tokens, NFTs, crowdsales,

marketplaces, gambling games, financial protocols, and more!

Contact us today to get a free quote for a smart contract audit of your project!

WHAT IS A SOLIDITY AUDIT?
Typically, a smart contract audit is a comprehensive review process designed to discover

logical errors, security vulnerabilities, and optimization opportunities within code. A

Solidity Audit takes this a step further by verifying economic logic to ensure the stability of

smart contracts and highlighting privileged functionality to create a report that is easy to

understand for developers and community members alike.

HOW DO I INTERPRET THE FINDINGS?
Each of our Findings will be labeled with a Severity level. We always recommend the team

resolve High, Medium, and Low severity findings prior to deploying the code to the

mainnet. Here is a breakdown on what each Severity level means for the project:

High severity indicates that the issue puts a large number of users' funds at risk and

has a high probability of exploitation, or the smart contract contains serious logical

issues which can prevent the code from operating as intended.

Medium severity issues are those which place at least some users' funds at risk and

has a medium to high probability of exploitation.

Low severity issues have a relatively minor risk association; these issues have a low

probability of occurring or may have a minimal impact.

Informational issues pose no immediate risk, but inform the project team of

opportunities for gas optimizations and following smart contract security best

practices.

https://solidity.finance/#four

G O H O M E

© Solidity Finance LLC. | All rights reserved.

Please note we are not associated with the Solidity programming language or the

core team which develops the language.

Please review our Terms & Conditions and Privacy Policy. By using this site, you

agree to these terms.

https://solidity.finance/
https://soliditylang.org/
https://solidity.finance/legal/

